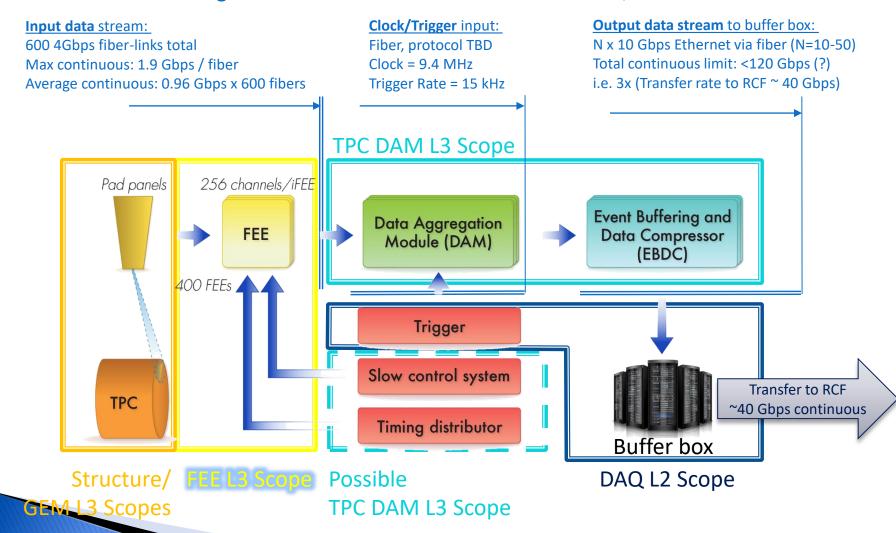
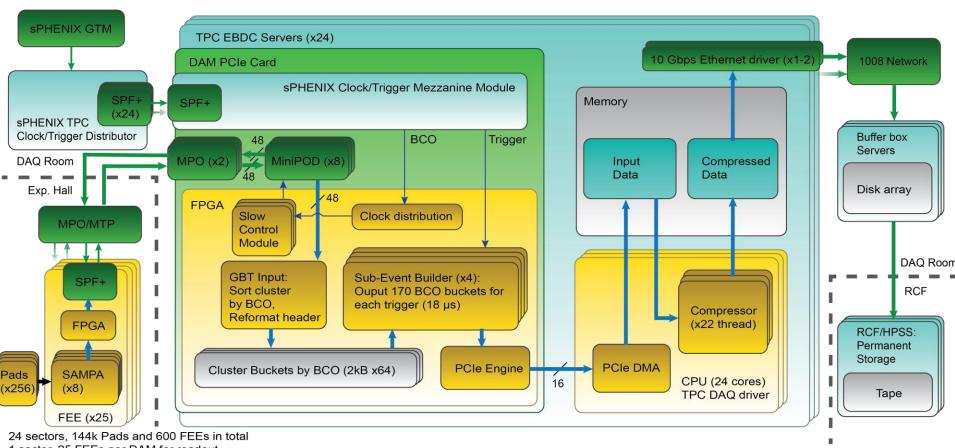
sphenix Tpc Readout and ATLAS FELIX Card Option


Jin Huang (BNL)

Many thanks to discussion with Takao, Joe, Wei, Kai, Huchen, Martin, John and Ed


sPHENIX TPC DAQ Back-End

sPHENIX TPC is a next generation device with continues readout, data rate ~ 10x PHENIX

Current diagram

Assuming 24x (DAM + EBDC), each handle one of 24 TPC sector

1 sector, 25 FEEs per DAM for readout

Rate estimation spread sheets:

ALICE TPC DAQ

JINST 11 (2016) C03021, ALICE TDR

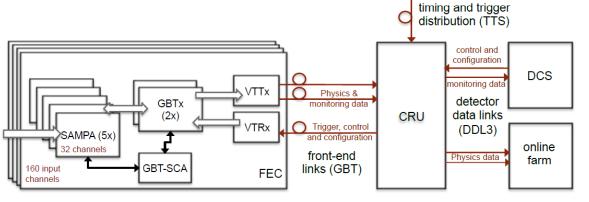
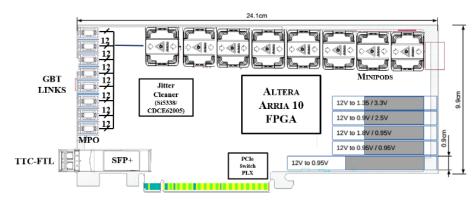



Figure 6.9: Schematic of the TPC readout system with the CRU as central part interfacing the front-end electronics to the trigger system, the DCS and the online farm.

ALICE CRU based on LHCb PCle40 card

- Prototyped by CPPM, Marseille, France
- Arria 10 family FPGA
- 48 bi-directional GBT links
- PCle Gen3 x16 interface
- TTC-FTL accepting ALICE timing/trigger
- Cost 10 k\$? (need to be confirmed)

(b) PCIe40 Schematic.

LTU

(a) PCie40.

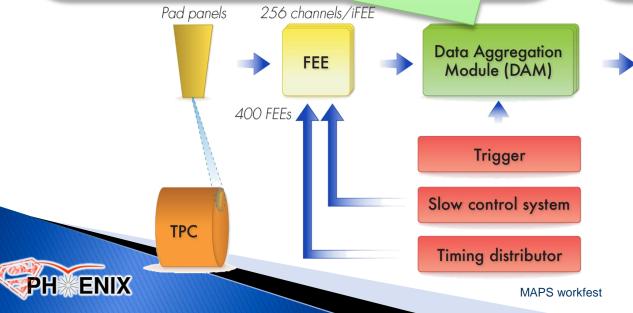
Our options: 10-50x (PCle card + server)

Data Aggregation Module (DAM):

PClex8 or x16 card with multiple (8-48x) GBT fiber IO

Option 1: LHCb/ALICE CRU

Option 2: ATLAS FELIX



Option 3: build our own based on ALICE/ATLAS exp.

Event Buffering and Data
Compressor (EBDC): Rack server
that can host at 1x PClex16 cards
+ 2x 10 Gbps Ethernet port

Example: Dell PowerEdge R830 2x12 cores, 2x10 GBps, ~ 10k\$

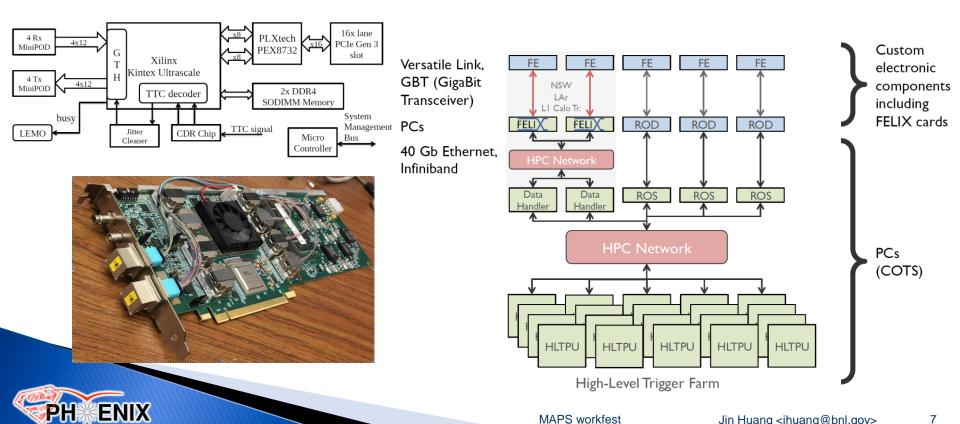
Jin Huang <jhuang@bnl.gov>

FPGA Choices

(a) PCie40.

FPGA Family Name	Xilinx	Altera	Xilinx	Altera	Xilinx	Altera	CRU	Xlinux - Kintex Ultrascale
	Virtex 6	Stratix V GX	Virtex 7	Arria 10 GX **	Virtex Ultrascale	Stratix 10	Requirements #	
Status		available	available	ES available	available	end of 2017		Available
				from Q2'15				
FPGA part number	XC6VLX240T	5SGXEA7	XC7VX690T	10AX115	XCVU190	10SG280		XCKU115
Used in	C-RORC	AMC40	MP7	PCIe40				FELIX v1.5 test boards
Logic Elements / Cells [M]	0.241	0.622	0.693	1.15	1.9	2.8		1.451
FFs [M]	0.3	0.939	0.866	1.7	2.14			1.3
LUTs [M]	0.15	0.235	0.433	0.425	1.07			0.66
18/20 Kb RAM Blocks	832	2560	2940	2713	7560	11721	1920 / 2560	4320
Total Block RAM (Mb)	15	50	53	53	133	229	40 / 53	75.9
≥ 10 Gb/s Transeivers	24	48	80	96	60	144	48	(48 input + 48 output fiber links in FELIX)
PLLs	12	28	20	32	60	48		48
PCIe x8, Gen3	2 (Gen2)	4	3	4	6	6		6

[#] TPC Detector is the majority user (>70%) of CRU boards. CRU requirements is measured against TPC detector specific logic occupancy.

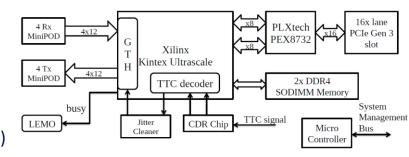

^{**} Altough the maximum number of links of the Arria10 family is 96 links, the FPGA equiping the PCIe40 board has only 72 links

ATLAS/FELIX BNL-711 PCIe Card

Credit: Kai Chen (BNL), https://indico.bnl.gov/conferenceDisplay.py?confld=2653

- BNL-711 Board chosen for ATLAS FELIX project, and used in ATLAS phase I upgrade, which is projected to complete before sPHENIX.
- Readout for ATLAS Phase-I sub-system of Liquid Argon Calorimeter, Level-1 calorimeter trigger, New small wheel of the muon spectrometer

ATLAS/FELIX Card for sPHENIX?

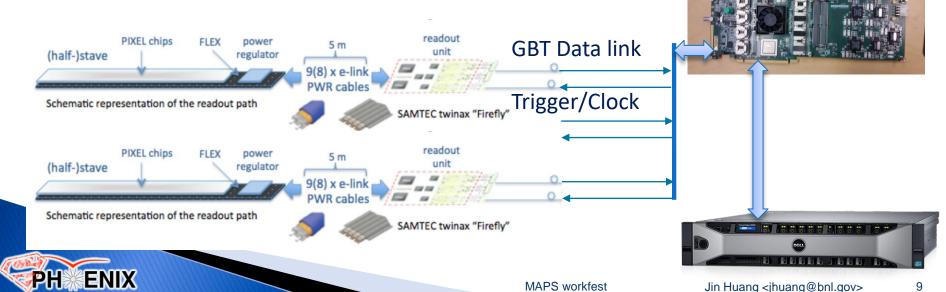

Credit: Kai Chen (BNL), https://indico.bnl.gov/conferenceDisplay.py?confld=2653

Main features for FELIX PCIe Card

- Design: BNL/Omega group, Layout: BNL/Instrumentation, Goal: multiple users.
- A large Kintex Ultrascale FPGA, 1.5 M Logical Cells (24x Logical Cells of FVTX FEM card)
- 48 bi-directional GBT link, PClex16 Gen3, 101 Gbps demonstrated
- 2x DDR4 memory slots (v1.0, v1.5), removed v2.0
- TTC-timing input (v1.0, v1.5), timing mezzanine card (v2.0)

Timeline and availability:

- Current version: v1.5 prototype, can be ordered now
- Next version: v2.0 pre-production, design starts now, expect available Oct 2017
- FELIX production system delivery expected end 2018 for ATLAS Phase-I upgrade. ATLAS needing 100+ card with various flavor of firmware depending on subsystem configurations.
- BNL/Omega group, Local expert expressed willing for help us to adapt FELIX in sPHENIX
 - Boards for initial evaluation test
 - Support firmware software development, timing mezzanine card design
 - The team is also help in possible use of FELIX card in proto-Dune.
 - The FELIX team is open for inputs in guiding the design to be more generic to various users.

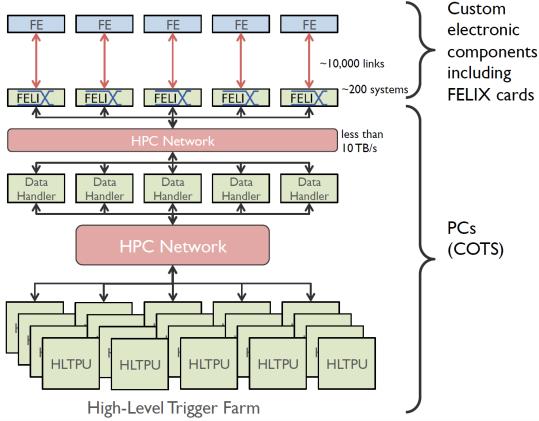


FELIX v1.5 Card in server BNL ATLAS Group

TPC Outlook and possible use in MAPS

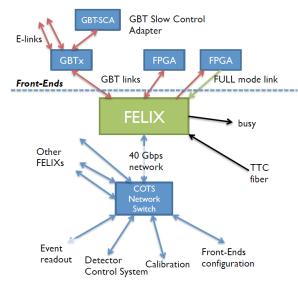
- The TPC group plan to acquire an early version of FELIX PCIe card to setup a test stand and evaluate DAQ feasibility.
- If FELIX card is determined to be the best option, we will move to order a few pre-production board for prototyping.
- It makes sense to try pursuing the same system for MAPS+TPC readout, and share DAQ expertise and effort in timing distribution, card/server pool, event-building software development

Extra Information



Upgrade for HL-LHC

Versatile Link, GBT, LpGBT (Low power GBT) COTS network technology

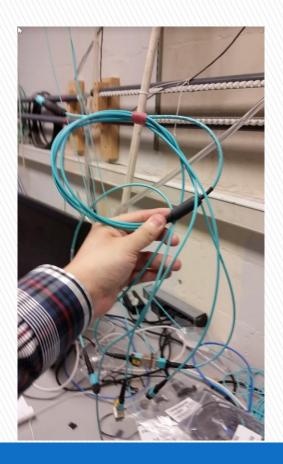

Kai Chen – (BNL) December 19, 2016 6

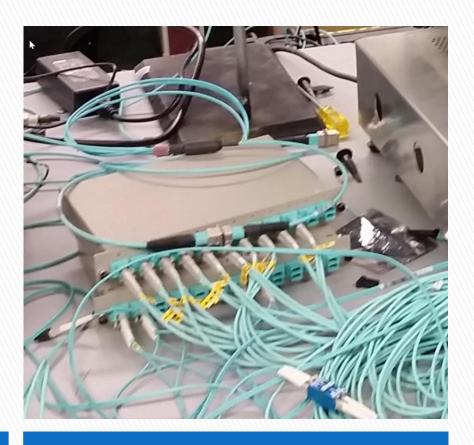
:Y

FELIX functionality

- Normal GBT mode: 3.2 Gbps payload, with FEC (forward error correction)
- GBT Wide-bus mode: 4.48 Gbps payload
- FULL mode: 9.6 Gbps link speed in 8B/10B

- Scalable architecture
- Routing of event data, detector control, configuration, calibration, monitoring
- E-links configuration configurable: 2/4/8/16 bit
- Detector independent
- TTC (Timing, Trigger and Control) distribution is integrated
- IP blocks are provided.
 - PCIe DMA core: Wupper.
 - Optimized GBT-FPGA core.
 - FULL mode examples for front-end.


• Software:

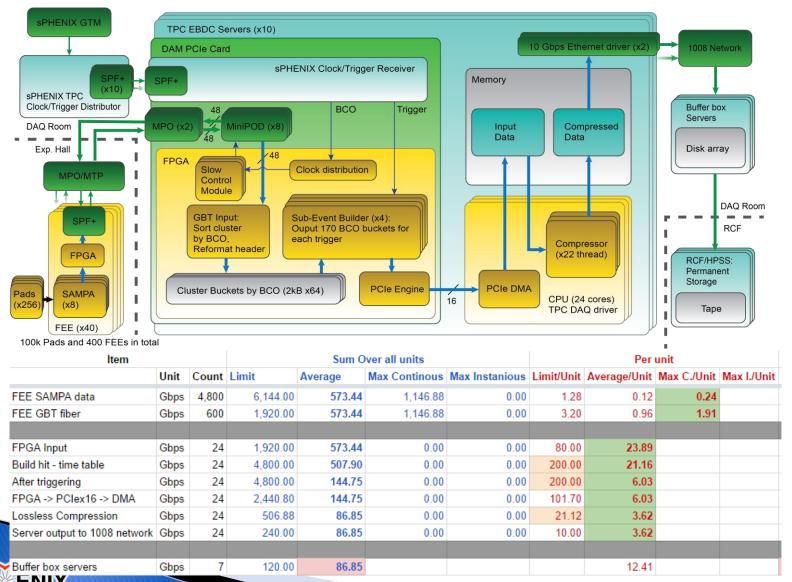

- Low-level tools: PCIe driver
- Control: firmware housekeeping, hardware monitoring and tools to control and monitor the Front-Ends.
- Testing: DMA & throughput testing.
 Long time continuous data streaming to the disk, and checking.

Kai Chen – (BNL) December 19, 2016

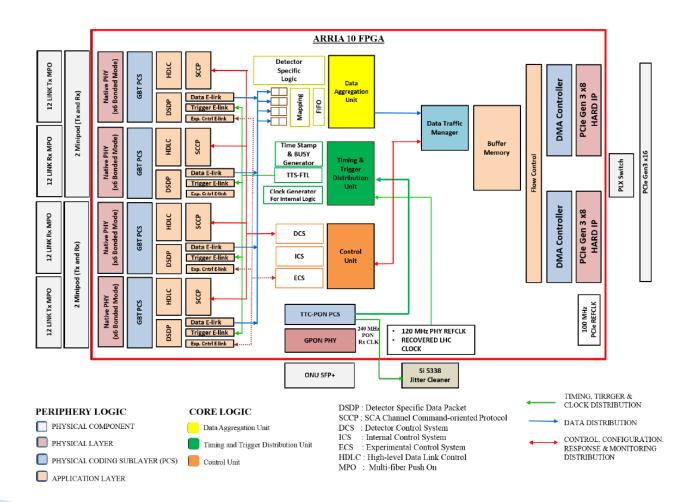
MPO/MTP

Schedule for version 2

• Schedule:


- Two V1.5 cards have been tested. Two V1.5 is being assembled.
- 02/2017: V1.5 will be fully tested by FELIX group, firmware and software will be ready in 03/2017.
- 01/2017: design of the pre-production board V2.0 starts.
- 01/2017 02/2017: Schematics design
- 03/2017 05/2017: Layout design
- 06/2017 07/2017: Fabrication and assembly
- 08/2017: Initial evaluation test
- 09/2017 10/2017: Assembly and test of more V2.0 BNL-711
- 10/2017: V2.0 BNL-711 is available for firmware development

Kai Chen – (BNL) December 19, 2016 25



Summary

Rate estimation spread sheets:

CRU diagram

SAMPA/STAR iFEE

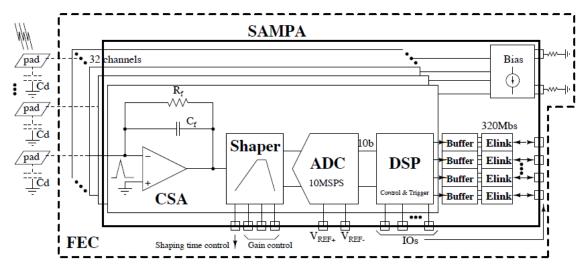
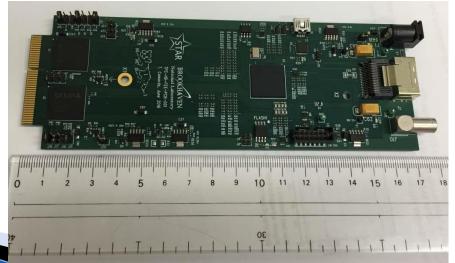
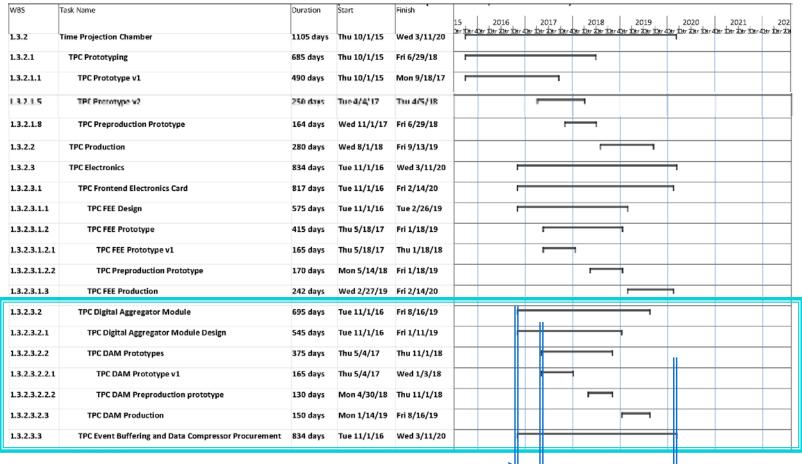
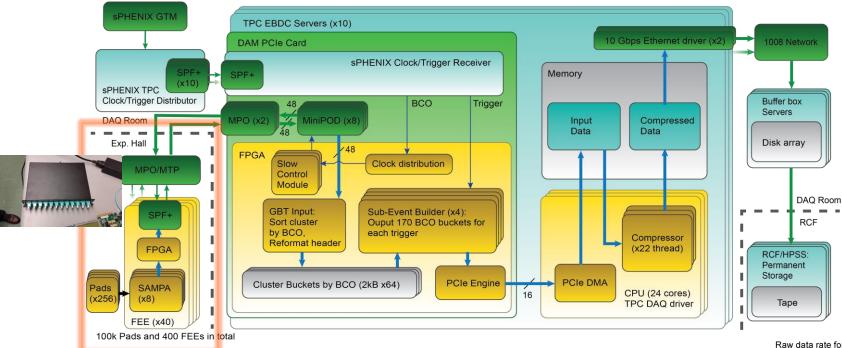
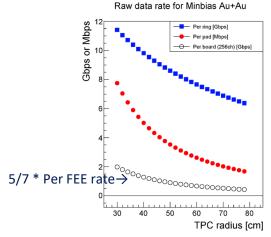




Figure 6.4: Schematic of the SAMPA ASIC for the GEM TPC readout, showing the main building blocks.

Timeline envelop. Cost <~ 0.45 M\$

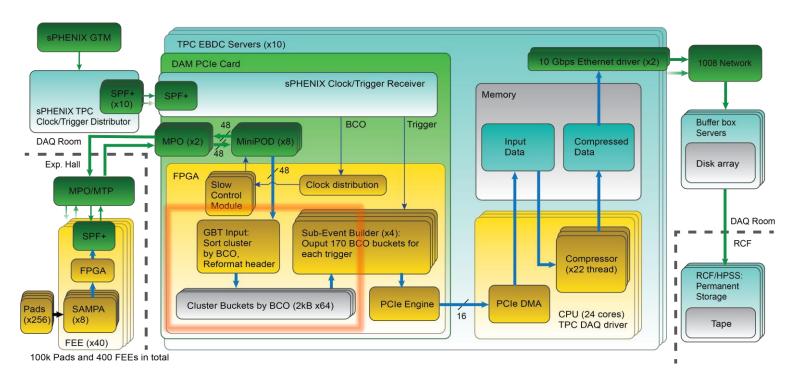


Next Milestone

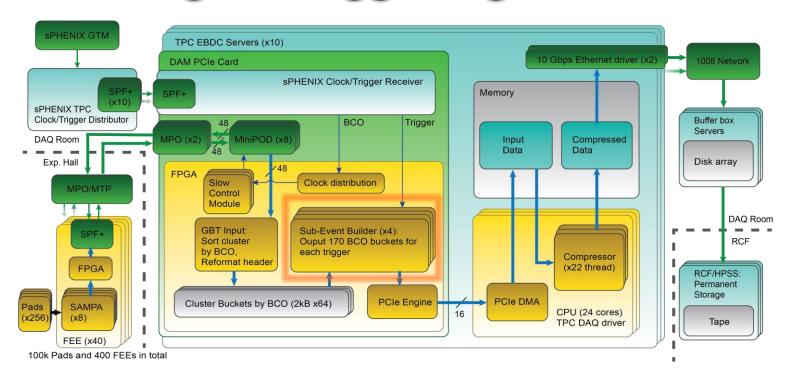

- Q4 2016, Design starts
- Apr 2016, Feasible design, BNL CD1 review
- Mid 2017, Prototype, 2 iterations possible
- Mid 2018, CD3-b authorization, production start
- Early 2020, Deliver all parts to 1008, establishing KPP
- Jan 2022, First beam

Input stage

Rate estimation spread sheets:

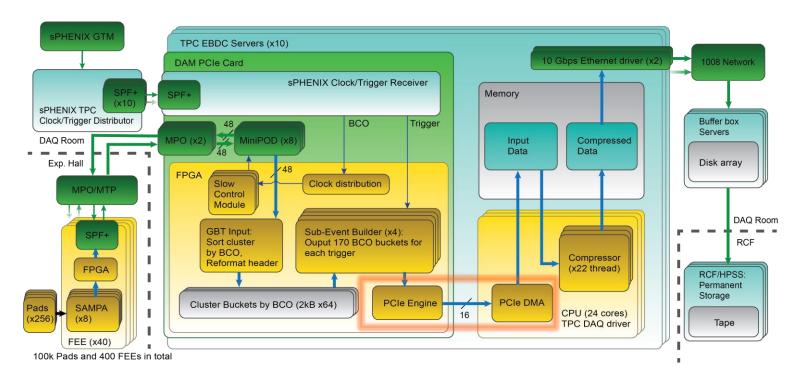


- Per DAM: 40 FEEs, each send data in 1 fiber
 - Data format in minimal chunk = one cluster in one channel:
 2x10 bit header (channel ID + timing + length) + 5x10 bit wavelet
 - Wavelet sampled timed to BCO (beam collision clock = 9.4 MHz)
 - Payload speed limit = 3.2 Gbps/fiber, 128 Gbps/DAM
 - Max continuous rate = 2.87 Gbps , 115 Gbps/DAM
 - Average continuous rate = 1.43 Gbps
- Media: MTP fibers -> bundle to MPO. GBT/UPT protocol?
- Downlink fiber send clock and slow control to FEEs


BCO buckets

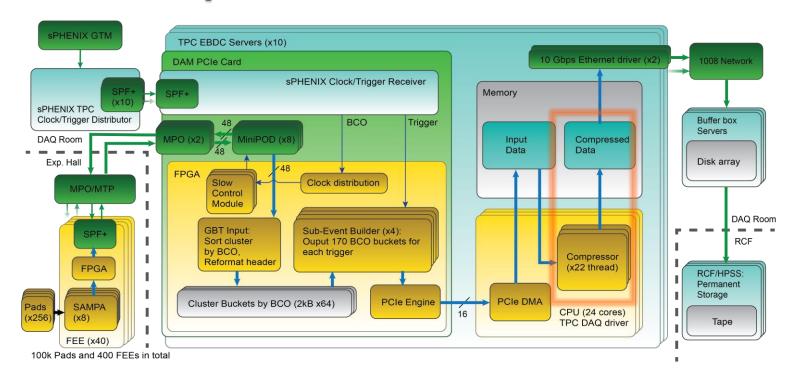
Rate estimation spread sheets:

- In FGPA, separate clusters into buckets
 - Data format in minimal chunk = one cluster in one channel:
 2x10 bit header (channel ID + length) + 5x10 bit wavelet
 - Buffer long enough to allow transmission time spread, FVTX used 64 BCO buckets
 - Use internal memory on FPGA for BCO buckets storage (1.3kB * 64 BCOs)
- Max continuous rate/DAM = 115 Gbps, 2kB/BCO
- Average continuous rate = 57 Gbps


Throttling VS triggering trips://d.sa.ple.com/spreadsheets/d/1Q uyf00 8pushSiYns29T -ThIOQQaqpKbVs LDqlAg/edit?usp=sharing

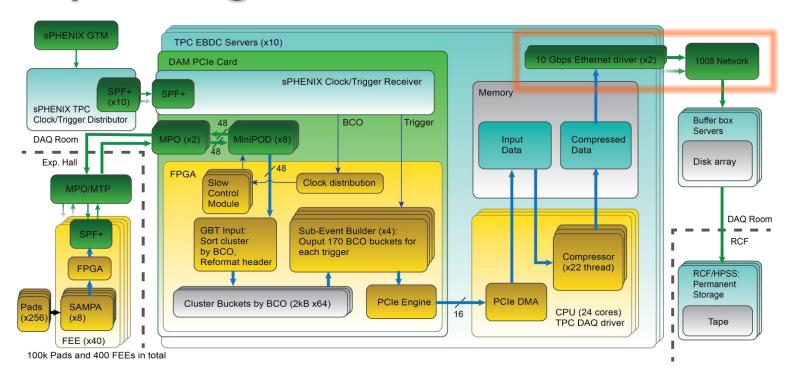
- 15kHz trigger + 170 BCO readout length (readout 18us data per trigger) → only need ~25% data from the input continues stream
- Two options
 - Throttling: only record hits within 170BCO of the trigger and form a continuous data stream; no duplicated hits. Data reduction to 25.5%
 - Trigger: for each trigger, readout a chunk of hits timed to the next 170BCO. Form sub-event and easy for analysis; but could duplicate
 hits in output data if two trigger comes within 170 BCO. Data reduction to 28.5%
- Since the trigger mode only increase data volume by 10% (relatively), I would prefer trigger mode instead of throttled mode for easy analysis and monitoring.
- Output max continuous rate/DAM = 33 Gbps
- Output average continuous rate = 16 Gbps

FPGA -> CPU


Rate estimation spread sheets:

- FIFO and DMA event building output to Server Memory
 - Media: PCle Gen3 x16
- Demonstrated rate limit for FELIX (PCIe x16) = 100 Gbps
- Max continuous rate/DAM = 33 Gbps
- Average continuous rate = 16 Gbps

Data compression


Rate estimation spread sheets:

- Multithread compression
 - Algorithm: LZO on multi-event chunks
 - Demonstrated compression ratio = 60%
- Estimated rate limit = 120 MBps / core = 21 Gbps
- Max continuous rate/DAM = 19.6 Gbps
- Average continuous rate = 9.8 Gbps
- Backup option: Xlinux-based commercial FPGA code block run on gzip, 16k LUT, 100 Gbps https://www.xilinx.com/products/intellectual-property/1-7aisy9.html#metrics

Output stage

Rate estimation spread sheets:

- Output to event builder
 - Media: 1x or 2x 10 Gbps Ethernet ports per EBDC server
- Rate limit media / EBDC server = 20 Gbps payload ?
- Rate limit buffer box = 120 Gbps total? (3x HPSS rate)
- Max continuous rate/EBDC = 19.6 Gbps
- Average continuous rate for whole system = 98 Gbps

